pyTorch 4

[DL] 아인슈타인 합의 표기법(Einstein Summation Notation)

아인슈타인 합의 표기법(Einstein Summation Notation) 정의 아인슈타인 표기법 또는 아인슈타인의 합 규약은 수학의 선형대수학을 물리학에 응용하면서 좌표계에 관한 공식을 다룰 때 유용한 표기 규칙입니다. 이 방법의 핵심은 반복되는 인덱스를 사용하여 합을 나타내고, 이를 통해 더 복잡한 텐서 연산을 단순화하는 것입니다. 수식 특정 index의 집합에 대한 합(시그마)연산을 간결하게 표시하는 방법. Aik⋅Bkj를 수행하면 output dimension은 [I,J] 이 후 I에 대해 summation Einstein Notation(우변) 에서는 다음의 경우 sigma기호를 생략 반복적으로 합산되는데 이용되는 index(k)에 관련된 sigma 최종 결과 값 Cj에 명시되지 않은 index..

DL 2024.04.17

[Computer Vision] Cycle GAN: Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks 논문 리뷰 및 구현 (2)

https://mz-moonzoo.tistory.com/18 [DL-Papers] Cycle GAN: Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks 논문 리뷰 및 구현 ≒Paper: https://arxiv.org/abs/1703.10593 0. Abstarct Image-to-image translation은 pair-image를 이용해 입력이미지와 출력 이미지 간의 매핑을 학습합니다. 그러나 많은 task의 경우 pair-image를 이루는 훈련 데이터를 mz-moonzoo.tistory.com 이전 글 CycleGAN 논문 리뷰입니다. 이론적인 부분을 참고하시면 될 것 같습니다. CycleGAN 논문 구..

DL/Computer Vision 2023.01.25

[Computer Vision] GAN(Generative Adversarial Nets) 논문 리뷰 및 구현 (2)

이전글 ) GAN 논문 리뷰 [DL-Papers] GAN(Generative Adversarial Nets) 논문 리뷰 및 구현 (1) 지금까지 논문 스터디 학회 활동과 개인적으로 정리했던 논문들을 하나씩 올려보려고합니다. 과거에 정리한 글을 올리면서 잊어버렸던 내용을 상기시키면서 조금씩 부족한 부분을 최대한 수정 mz-moonzoo.tistory.com GAN 요약 G: Generative model GAN은 생성모델로 이미지, 음성, sequentail data등 원하는 형태의 데이터를 만드는 모델이다. Discriminative model을 상대로 완벽하게 속이고자 한다. -> training data의 분포를 모사함 D: Discriminative model 실제 데이터와 생성 모델이 만들어낸 데..

DL/Computer Vision 2023.01.17

[Debugging]Parseq RuntimeError: NCCL error Call to CUDA function failed

OCR 대회를 진행하면서 Parseq 모델을 사용하면서 여러가지 Error를 접하게 됐습니다. https://mz-moonzoo.tistory.com/6 https://github.com/baudm/parseq/blob/main/train.py GitHub - baudm/parseq: Scene Text Recognition with Permuted Autoregressive Sequence Models (ECCV 2022) Scene Text Recognition with Permuted Autoregressive Sequence Models (ECCV 2022) - GitHub - baudm/parseq: Scene Text Recognition with Permuted Autoregressive S..

Debugging 2023.01.03