0. 요약 본 논문에서는 딥러닝 객체 인식을 기반으로 한글 문서 내 표 및 박스의 텍스트 정보를 추출하고 이를 재배열하여 문장화하는 방안을 제시하였습니다. 객체 감지 모델 Yolo를 통해 추출한 문서 내 표 및 박스의 좌표 정보를 토대로 OpenCV와 Google Cloud Platform의 Vision API를 적용하여 문서로부터 표 및 박스 이미지를 분리하고 텍스트를 감지하였습니다. 추출한 표 및 박스 내 텍스트를 문장화하기 위한 규칙 기반의 텍스트 재배열 방법을 제안하였으며 이를 통해 표의 텍스트 정보가 원래 의도된 문장으로 도출되는지 확인하였습니다. 1. 서론 문서 내에는 본문의 텍스트 정보뿐만 아니라 다양한 형태의 그림이나 표 등의 자료를 포함하고 있는 경우가 많습니다. 이러한 자료 중 표 내부..