1. Experiment https://mz-moonzoo.tistory.com/6 저번 글에 이어서 1주일 정도 시간이 흘러서 그동안의 시행착오에 대해 정리해보고자 합니다. 우선 SOTA모델인 parseq를 활용했음에도 불구하고 드라마틱한 성능변화가 나타나지는 않았습니다. 그래서 여러가지 데이터셋 증강 기법과 파라미터 조정을 통해 성능 향상을 이끌어 냈습니다. 이제부터 실험과 실험 결과에 대해 간단히 작성하도록 하겠습니다. Experiment Summary 1. baseline score -> 0.6563230797 -> model : Resnet+RNN+CTC Loss Dataset : 대회 제공 train 데이터셋 (76888개) test_size=0.2 shuffle = True 2. parseq..