검출 2

[Computer Vision] Extraction of Table Text Information in Documents Using Deep Learning Object Detection (2023)

0. 요약 본 논문에서는 딥러닝 객체 인식을 기반으로 한글 문서 내 표 및 박스의 텍스트 정보를 추출하고 이를 재배열하여 문장화하는 방안을 제시하였습니다. 객체 감지 모델 Yolo를 통해 추출한 문서 내 표 및 박스의 좌표 정보를 토대로 OpenCV와 Google Cloud Platform의 Vision API를 적용하여 문서로부터 표 및 박스 이미지를 분리하고 텍스트를 감지하였습니다. 추출한 표 및 박스 내 텍스트를 문장화하기 위한 규칙 기반의 텍스트 재배열 방법을 제안하였으며 이를 통해 표의 텍스트 정보가 원래 의도된 문장으로 도출되는지 확인하였습니다. 1. 서론 문서 내에는 본문의 텍스트 정보뿐만 아니라 다양한 형태의 그림이나 표 등의 자료를 포함하고 있는 경우가 많습니다. 이러한 자료 중 표 내부..

DL/Computer Vision 2024.02.22

[Computer Vision] Methods of Classification and Character Recognitionfor Table Items through Deep Learning (2021) 리뷰 및 구현

1. 서론 문서 내 표 영역의 경우, 표 내부 항목명과 항목 내용을 인식하는 것은 업무 자동화를 위한 문서 처리 에 있어서 중요한 부분입니다. 하지만 OCR만을 통해서는 표 내부의 문자를 인식하는 것에만 국한되어있고, 해당 내용이 무슨 의미를 가지는지는 인식을하지 못합니다. 따라서 문서 인식을 수행한 후, 사람의 손으로 항목을 분류해야 한다는 불편함이 있으며, 표 영역 내 구분자는 문자 인식의 정확도를 떨어뜨리는 요인이 되기도 합니다. 본 논문에서는 딥러닝 신경망을 통해 표 항목 내의 문자를 인식하고, 이를 통해 문서를 디지털화하는 방법을 제안합니다. 먼저 스캔된 문서 이미지 파일에서 CNN을 통해 표 영역을 검출합니다. 그 후, 표 영역 내 수직선과 수평선의 구분자로 분리된 각 영역을 검출한 후, 각각..

DL/Computer Vision 2024.02.22