str 2

[Computer Vision]DACON 교원 그룹 AI 챌린지 Task : OCR (feat. Trocr)

INTRO DACON에서 진행한 교원그룹 AI 챌린지 Task : OCR 평가지표 : Accuracy 처음으로 진행해보는 OCR Task라서 이것저것 찾아보면서 컴피티션을 진행했습니다. TrOCR MaskOCR이 성능이 좋아보이지만 구현된 코드가 없어서 TrOCR을 사용해봤습니다. TrOCR외에도 여러 모델을 사용해봤는데 이 글에서는 TrOCR 학습 과정에 대해 적어보려합니다. 1. 학습 환경 설정 깃허브 복제 및 라이브러리 설치 라이브러리 충돌이 나는 것을 방지하기 위해 아나콘다 가상환경을 새로 구축하고 실행했습니다. 우선 git clone을 통해 깃허브 리포지토리를 복제해 requirements를 설치 해주시면 됩니다. 패키지 불러오기 아래의 def 함수들은 실행하지 않으셔도 무방합니다. 가끔 에러가..

DL/Computer Vision 2023.01.13

[Computer Vision]DACON 교원 그룹 AI 챌린지 Task : OCR (feat. parseq)(2)

1. Experiment https://mz-moonzoo.tistory.com/6 저번 글에 이어서 1주일 정도 시간이 흘러서 그동안의 시행착오에 대해 정리해보고자 합니다. 우선 SOTA모델인 parseq를 활용했음에도 불구하고 드라마틱한 성능변화가 나타나지는 않았습니다. 그래서 여러가지 데이터셋 증강 기법과 파라미터 조정을 통해 성능 향상을 이끌어 냈습니다. 이제부터 실험과 실험 결과에 대해 간단히 작성하도록 하겠습니다. Experiment Summary 1. baseline score -> 0.6563230797 -> model : Resnet+RNN+CTC Loss Dataset : 대회 제공 train 데이터셋 (76888개) test_size=0.2 shuffle = True 2. parseq..

DL/Computer Vision 2023.01.09